If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2-18t+20=0
a = 2; b = -18; c = +20;
Δ = b2-4ac
Δ = -182-4·2·20
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{41}}{2*2}=\frac{18-2\sqrt{41}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{41}}{2*2}=\frac{18+2\sqrt{41}}{4} $
| 14x/24-2x=0 | | 171000=25x+240000-40x | | 4/5x+8=-1/5x-3 | | F(x)=-8x-8 | | X/2+9=x+7 | | (x^2+2x-6)^3=0 | | -21=3p | | H=-16t+20 | | 2=t-5/3 | | 12=12+w/5 | | 12=12+w5 | | 79+27.60x=46x | | w=2.8 | | 11+25=2x+4x | | 3x+100/x=23 | | 22x+50=29 | | 3x+6x=8-5x | | 4t-59=0 | | 5x-11=-4x | | (23+18+16+24+27)+x/6=20 | | 108+x=20 | | 7x2-10x+8=0 | | (23+18+16+24+27+x)/6=20 | | 3.54x=x+6.35 | | 4x–3=13 | | 400*(20-x)*(x-4)=0 | | 14x-4=6x+32 | | 4/7y=4/9 | | 4w-31=-3(w+8) | | 11x+25=29+29 | | 9y*5=16 | | 5x+1=89 |